RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [BATCH 2015-18] B.A./B.Sc. SECOND SEMESTER (January – June) 2016 Mid-Semester Examination, March 2016

Date Time	: 19/03/2016 PHYSICS (General) : 12 noon – 1 pm Paper : II Fu	ıll Marks : 25
Answer <u>any five</u> questions :		[5×5]
1.	 a) Prove : div. curl F = 0. where F is a function of x, y, z. b) A vector field is given by A = (x² + xy²)i + (y² + x²y)j. Show that the field is irrotational find the scalar potential. 	[2] l and [1+2]
2.	a) Write Gauss's theorem.b) Find electric field due to symmetric charge distribution at the surface of a charged conductor.c) Write divergence theorem (only mathematical form).	[1] or. [3] [1]
3.	Explain the three vectors electric intensity (\vec{E}) , Electric polarisation (\vec{P}) , displacement (\vec{D}) establish the relation $\vec{D} = \in .\vec{E} + \vec{P}$.	and [5]
4.	Explain what is meant by the degrees of freedom of a mechanical system. Show that if a mole has 'f' degrees of freedom, the ratio Y of its specific heats is given by : $Y = 1+2/f$. Also find ratio of specific heats for a linear triatomic gas.	ecule d the [5]
5.	Graphically represent in a figure the nature of Maxwell distribution curve for Helium, Neon Argon at 298 K.	and
	If the density of planet is 5.5×10^5 kg/m ³ and its temperature is 27°C. Find the maximum radiu the planet which can retain oxygen in its atmosphere.	s for [5]
6.	Deduce the critical constants in terms of Van-der-Waal's constants. Define critical coefficient explain how it is different from experimentally observed values for different gases.	t and [5]
7.	In the circuit given below, find by applying Thevenin's theorem, the voltage across the 4Ω resist	stor. [5]
8.	a) Find an expression of current flowing through an LR circuit at any time after the battery of	emf
	V is switched on, show the result graphically.b) A coil of inductance 2H and resistance 50Ω is connected in series with a resistance of 5	[3] 50Ω.

Calculate the time constant of the circuit. If a 5V battery is switched on the circuit at t = 0, determine the maximum rate of growth of current.

[2]